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1. Phys.: Condens. M e r  7 (1995) 9343-9356. Printed in the UK 

Statistical errors in x-ray absorption fine-structure data 
analysis 

Adriano Filipponit .. 
DipaRimento di Fisica, Universita degli Suldi dell' Aquila, Via Vetoio, 67010 Coppito, L'Aquila, 
Italy 

Received 12 May 1995, in final form 23 August 1995 

Abstract General criteria for performing a rigorous statistical error determination in x-ray 
absorption fine-structure data analysis an formulated. The equivalence of the residual function 
increment approach ( A  R((,X]) < R,i. with more rigorous Monte Carlo procedures is 
demonstrated in the case of the analysis of theBr2 spectrum. The possible existence of nonlinear 
effects in parameter space is discussed and a specific example referring to the S - C =  molecule 
case is illusmed. Practical suggestions are given to improve data collection procedures and to 
select appropriate fitting parameters in the analysis. 

1. Introduction 

X-ray absorption spectroscopy (XAS) has become a widely used technique in condensed- 
matter physics, chemistry, earth sciences, and biology, to probe the local structural 
environment around photoabsorbing atoms [I]. XAS provides an insight that is sometimes 
complementary to that of other well established techniques while unique information is often 
obtained. Several advanced software packages suitable for performing a reliable analysis 
based on theoretical calculations have been developed 12, 3, 4, 51 and efforts have been 
recently devoted to establishing standard criteria of analysis [6]. 

In spite of the existence of many data analysis methodologies, very little attention has 
been paid to the establishment of correct procedures for error evaluation in the derived 
structural parameters. As a matter of fact quoted errors~ae often only estimated in a 
qualitative way-sometimes, even using questionable approaches. So far, very few papers 
have been devoted to a comprehensive discussion of this fundamental aspect of the extended 
x-ray absorption fine structure (EXAFS) data analysis. 

It is generally assumed that the EXAFS accuracy is mainly limited by the presence of 
systematic errors due to the intrinsic approximations in the theoretical formulations. Recent 
comparisons of data analysis results in the case of model compounds with known structure 
[4,5] indicate, however, that present theoretical approaches are quite reliable. Data analysis 
results are also found to be largely insensitive to variations of the free theoretical parameters, 
for instance the muffin-tin radii used in the construction of the phase-shifts. These findings 
suggest that the magnitude of systematic errors is low and that reliable structural. results can 
nowadays be obtained from EXAFS analysis based on theoretical calculations. Under these 
circumstances a statistical error treatment becomes an essential step of the data analysis 
procedure. Stitistical errors represent a bound for the accuracy of the information that 
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can be extracted from experimental data and indicate the level to which structural results 
on model systems must be compared with the known values. Moreover they provide a 
reliable estimate for the actual error in the fitting parameters at least in those cases for 
which systematic errors in the analysis of model compounds are found to be. negligible. 

The statistical evaluation of the EXAFS fitting results was first addressed in a paper by 
Joyner et a1 [7], where large emphasis was given to pointing out the existence of strong 
correlations between some EXAFS parameters (such as EO and R )  and on the necessity of 
accounting for this correlation in quoting the errors. The paper also dealt with applications 
of the F test to establishing the significance of the addition of a further coordination shell 
in the fit Criteria for error evaluation were given in terms of the intersection of the fit 
index (FI) function with reference levels (the value FI = FImi,/0.96 was suggested as a 
rule-of-thumb criterion). 

No further paper appeared on this subject until it was pointed out IS] that the information 
content in the oscillating EXAFS signals is limited by the extension in k and R space of the 
signal and that the number of independent points was actually only Nind = 2 Ak A R / r  + 2, 
usually. much smaller than the number of experimental points N .  According to Stern [SI Nj.d 
is also an upper limit for the number,of parameters p that can be fitted to the corresponding 
EXAFS spectrum. 

A method for error determination in the parameters was described in 191 where a xZ- 
like function scaled by a value of Nind was incremented by the value of unity to define 
the confidence interval in parameter space. These latter prescriptions appear at variance 
with well established results in the field of nonlinear minimization procedures 1101 that are 
currently adopted in different scientific contexts 111, 121. 

As a result of the present considerations we feel it is important to raise the issue of 
a rigorous formulation of the error .evaluation procedures in E M S  data analysis, based 
on well founded statistical grounds. This paper is intended to provide an insight into this 
problem combining theoretical formulation with explicit examples. 

2. Theory 

2.1. General formulation 

The XAS theory provides a framework in which to calculate model x-ray absorption spectra 
(Ymod(i?; A I ,  Az, . . . , ,Ip) as a function of p structural parameters , I j ,  j = 1, . . . , p ,  indicated 
as [A]. The theory is assumed to be able to model the actual absorption coefficient u(E) 
for certain values [i] of the parameters. It is also assumed that the experimental signal is 
only affected by random Gaussian noise with standard deviation 0;. possibly depending on 
the energy point Ei, that is 

cU,zp(&) = %od(Ei ,  {?.I) + & (1) 

where & is such that E&] = 0 and E(&cj] = &U?. In other words the probability density 
for a certain experimental spectrum outcome ueXp(Ei) is given by 
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In the spirit of the likelihood function estimators theory, the optimal estimate of I?.} for a 
certain experimental spectrum will be the set [I} maximizing the likelihood function 

As is always the case for Gaussian noise, this is equivdent to a least-square prescription on 
the residuals between model and experiment. 

Under these conditions it is natural to define a residual function as: 

and to write P([A)) ,  that actually represents the probability density in the parameter space 
(A) for the given experiment, as 

P(IA1) exp(-fR(IW). (5) 
The optimal values for the structural parameters will be the set (A) = (i) minimizing 

the residual function R({A)) in equation (4). The multi-dimensional minimization procedure 
can be handled with standard procedures and algorithms [IO, 121. We will not enter into a 
discussion of the.well known problem of the global versus local minimization achievement 
here. The (i] values will be, in general, sufficiently close to the true values I?.}. 

Following very standard procedures for nonlinear fitting problems it is possible to apply 
several statistical tests that are useful in the evaluation of the results. 

(i) The R((%]) function on the space'of the possible realization of the experimental 
noise is described by a x i - ,  random variable. The statistical x2 test can be performed to 
check whether the  actual^ value of R((X] )  is only due to residual noise or whether it still 
contains unexplained physical information. 

(ii) The comparison between two different models M I  and MZ for the structure, 
depending on P I  and p z  parameters respectively, can be performed using the F test. Typical 
cases can for instance occur in considering the addition of a further signal contribution, from 
M I  to M2, or the splitting of a shell into two, or they might be completely different~structures 
from which one has to choose. Let us suppose that the two minima of the residual are RI 
and R2 respectively. Then if both models were appropriate to explaining all of the signal 
one would expect the function 

N - PZ 
PZ - Pi 

to follow an Fn-p,.~-m distribution. The F test applied to f shows in this case whether 
or not the reduction of the residual R obtained in the best model is actually large enough 
and not simply due to the increase of model parameters or to random fluctuations. The F 
test has been previously applied in EXAFS data analysis 173 expecially by the users of the 
Daresbury EXCURVE package. 

2.2. Statistical errors 

The statistical error determination is a central topic of this paper and deserves a thorough 
discussion. Three approaches are described in the present section. 

Statistical errors in the stwctural parameters are ideally given by the spread of the fitting 
parameters associated with an ensemble of equivalent experimental data, that is by the spread 
in the {i] values generateb by the different possible realizations of the experimental noise 6 
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in equation (1). Unfortunately, only a single measurement is usually available. The effect of 
the random noise can be evaluated, however, even in this case, with the aid of a simulation. 
Once the noise level has been correctly determined, it is possible to generate random spectra 
adding different noise realizations to the reference experimental spechum. The optimized 
structural parameters for this simulated ensemble of spectra will be centred around (i] 
instead of (i] as in the case of an ideal ensemble of experimental spectra. However, their 
spread will mimic the spread occurring in the idealized case and is representative of the 
statistical uncertainty. In practice the observed spectrum parameters (i] differ from {I] 
by a random component whose magnitude is visualized by the spread of points around the 
central values. This spread reproduces the probability distribution of the location of the 
actual values around the only available determination (9. that is the error of the latter. 
An example of this random generation procedure for determining statistical errors will be 
presented in section 3.2. This procedure is reliable but not adoptable for routine analysis 
due to the large computing efforts required. 

A second approach for determining statistical errors is based on the use of the Metropolis 
Monte Carlo algorithm [13] to sample the parameter probability distribution given by 
equation (5). A procedure of this kind is based on the same principle of the reverse 
Monte Carlo method [I41 also proposed for the EXAFS data analysis [U]. As usual, a 
Markov chain in parameter space is generated by random moves {A] + (A’]. At each step 
the tentative new position {A’) is accepted if R((1‘)) < R({A]), and it is accepted with 
probability exp[-~(R({A’]) - R({A)))] if R((A’]) =- R({A]). In the case of non-acceptance 
the step is performed maintaining the original position [A]. The application of such a random 
process to experimental data will provide, after a sufficiently long equilibration period, a 
sequence of independent sets of parameter values, all producing equivalent best fits of the 
experimental spectrum within random noise. The sequence of {A] values will sample the 
parameter probability distribution P ( ( h ] )  given by equation (5). The average values among 
these parameters represent an average best fit, while the spread in the sample represents the 
statistical uncertainty as in the previous case. 

A third strategy for estimating statistical errors, that leads to a simple formulation 
suitable for routine analysis, is suggested by an analytical treatment. On expanding the 
function R((h))  to second order in A and about the minimum, it is found that the actual 
[i] values are displaced from the real values (x] by a linear function of the noise <. The 
ensemble of 5 values corresponds to an ensemble of [i(<)] values that, inserted into the 
R([A]) function, generate a random variable 

(7) 

that is a x,” random variable (with p degrees of freedom) shifted by the value of R in 
the minimum R ( ( I } )  = R,,,:.. Knowledge of the integral properties of the xZ  distribution 
allows one to establish confidence intervals for the parameters. The region in the parameter 
space enclosing the fraction y of the possible outcomes (usually y = 95%) will be defined 
by A such that R(.(A)) < Rmin + C, with C being a critical value of the x&95 distribution 
(p degrees of freedom and the 95% confidence level). Notice the dependence of C on p .  
An explicit example will be discussed in the next section. 

3. Applications and examples 

While the criteria discussed in the previous section are well established in the statistical field, 
the practical aspects involved in their application to EXAFS problems deserve a detailed 
treatment. In this section these aspects will be discussed and reference will be given to an 

R((%91) = R(IX1) + x,” 
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explicit example: the spechum of the Br2 molecule in gas phase. The measurement has 
been already published and has been the subject of detailed analysis [16, 171. 

The fitting of the Br2 spectrum is performed with p = 4 parameters, namely R, c?, 
EO, and Si. The first two are structural parameters referring to the mean and variance (not 
to be confused with the noise variance at point i ,  U?) of the bond distance distribution. 
The other two are empirical parameters defining the matching of the experimental and 
theoretical energy scales (EO)  and an overall amplitude reduction factor (St) accounting for 
normalization uncertainties due also to the one electron approximation. The optimal values 
are found to be in excellent agreement with the known structure indicating the absence of 
systematic errors. As an example, the fitted optimal value of R = 2.2884 A coincides 
to within 0.0001 A with the expected value of this quantity calculated from spectroscopic 
parameters [18]. This comparison clearly indicates the absence of major systematic errors 
in this specific case. 

3.1. Random noise 

Equation (4) assumes that the experimental noise is Gaussian. This requirement is largely 
satisfied when the photon counting statistic is large enough and after the energy points 
corresponding to glitches of the monochromator are eliminated; Equation (4) also assumes 
that the noise variance is a known function of the energy. 

Several approaches can be used to estimate the noise level in the spectra. Theoretical 
estimates of the noise level can be performed by a careful analysis of the data collection 
procedures and by considering the effects of the counting statistics andlor amplifier noise. 
Direct methods consist of performing several repeated measurements of the absorption 
coefficient on a representative set of energy points Ej along the spectrum. By assuming a 
smooth behaviour the noise level, d ( E ) ,  directly calculated at Ej ,  can be interpolated on 
the whole spechum. 

More practical methods are based on the noise evaluation on the same spechum subject 
to the EXAFS analysis. In previous papers, ways to isolate the noise component in EXAFS 
spectra by means of polynomial fitting or Fourier filtering have been proposed 1191 and 
applied [ZO]. An accurate determination of the noise level requires a certain oversampling 
of the EXAFS oscillations. Ideal spectra contain at least 800-1OOO energy points for a 
typical EXAFS acquisition. Two methods are found by us to be particularly efficient. 

(i) By assuming a smooth behaviour of the actual absorption coefficient, it is possible to 
model energy regions containing M data points with polynomial functions of de’gee q < M .  
With a suitable choice of M ,  q,  and energy intervals, the noise variance is estimated from 
the residual square difference (data minus polynomial fit) divided by M - q. This can be 
performed on successive subsets of M points suitable to be interpolated by a smooth &(E) 
function. 

(ii) Another possible stmtegy is to assume the residual (aexp(Ei) - amod(Ei ,  A)) in the 
minimum as due entirely to statistical noise. The squared residual can then be evaluated as 
a function of the energy and a smooth function interpolated through the available data. 

Equivalence of the noise level estimated with methods (1) and (2) occurs when the 
noise evaluation is reliable and the model signal has explained all of the structural EXAFS 
contribution. From the theoretical point of view the noise estimated from the residual 
variance as in (2) follows statistical fluctuations according to the xz distribution and 
consequently may be also underestimated. In this case, in which the noise is estimated 
from R,;, and an appropriate k weight is adopted, the condition R = Rmin +C for the error 
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confidence intervals reads R = R,,,in(l + C ( N  - P)/,&J. The term C(N - p ) / x i - ,  is 
an F random variable, and, as a result, the constant defining the confidence interval results 
increased according to the F distribution critical values. These considerations have a mainly 
conceptual importance rather than any practical consequence. In general the fitting residual 
will contain other sources of discrepancy and for this reason the noise (and errors in tIie 
parameters) are usually overestimated in this way. This procedure appears therefore safe 
and conservative. 

I ~ ' " " ' " " " 1  
1.2 h 

. . . . . . . . . . .  . . . . . . . . .  
.. . . .  . . . . . . . .  _.. . . . .  

I , . l , l . l l l l  ~~ ,.,.., , ,. , ., , , , ,, , ,  

13500 14000 14500 15000 . 
E ( 4  

Figure 1. Upper panel the K-edge x-ray absorption specmm of Bn in gas phase at room 
temperature. Lower panel: the mot mean square noise evaluated using different methods: 
root mean square deviations from fitting polynomials averaged over 50 points (thick hon'zontal 
segments), inlerpolating smooth function corresponding to k' weighting (solid line), absolute 
deviation from best fit (dots). 

A practical example of the previous discussion is reported in figure 1. The top curve 
is a magnification of the raw absorption spectrum of Brz recorded adopting three energy 
regions in the range 1340&13650-1400CN5000 eV with points equally spaced by 0.8, 
1.5, and 3.0 eV, respectively. The lower part of figure 1 reports on a logarithmic scale 
the root mean square (rms) noise level estimated by different methods. The horizontal 
thick segments represent the average deviations from fitting seven-degree polynomials in 
successive regions including 50 energy points each. The scattered points represent the 
modulus of the residual function after fitting with the structural contribution. , In  this case 
the smctural contribution has been completely accounted for and the residual contains only 
random noise. In fact the magnitude of the average noise is comparable. In this case both 
methods are suitable for evaluating the experimental noise and suggest the correct weight 
function to be used in the fit. The solid line refers to a smoothed version of the experimental 
noise function u(E) corresponding to a k' weight of the fitting. The energy dependence of 
therms noise that decreases on increasing energy is in this case due mainly to the increasing 
transmission of the thin glass windows, used to confine the Br2 gas in the experimental cell 
D61. 
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3.2. Error Confidence intervals 

9349 

Insight into the theoretical treatment given in section 2.2, regarding the statistical 
prescriptions used to determine the confidence intervals for the fitting parameters, is given 
by the discussion of explicit examples. All three different procedures are applied to the 
analysis of the Brz speclnun and proof of substantial equivalence will be provided. 

An ensemble of 500 equivalent simulated spectra has been generated by adding to 
the available experimental spectrum random noise realization, with u ( E )  given by the 
continuous curve in figure 1 (lower panel). Each spectrum has been fitted by the same 
procedure and a sample of 500 corresponding sets of fitting parameter values has been 
obtained. The spread in these values mimics the spread occurring among the fitting 
parameters of an ideal ensemble of equivalent experimental spectra. The sample is in 
this case centred around the parameters (9 corresponding to the experimental spectra that 
are displaced from the unknown 'exact' values [XI. The results of this procedure are 
presented in figure 2; panel (a )  for the Eo, R subspace and panel (b) for the R, U* 

subspace. The scattered points filling roughly ellipsoidal space regions correspond to two- 
dimensional projections onto the two subspaces of the fitting parameters for the ensemble 
of 500 simulated spectra. The cross at the centre refers to the fit of the reference spec!". 
The existence of correlation between R and Eo is quite evident in figure 2 (a); positive EO 
deviations are combined with positive R deviations (positive correlation). 

The Melropolis Monte Carlo algorithm has been also applied to the Br2 case. After 
a sufficient number of equilibration steps, during which the region of the optimal residual 
minimum was reached, the simulation in parameter space was extended for another 50000 
steps. The values of the parameters were sampled every 100 steps to insure an uncorrelated 
sampling. The random moves on each parameter were selected from uniform dishibutions 
centred around zero. The dishibution widths were chosen to be 0.001 A for R, 0.0001 
for U*, 0.3 eV for Eo, and 0.01 for S,, in order to optimize the acceptance rates and 
maximize the diffusion in parameter space. Since, after equilibration, any set [A ]  is an 
equivalently good fitting of the experimental data the resulting sample spread (in our case 
the sample dimension was 500 again) represents the uncertainty in parameter values. The 
set of parameter values is actually a sample of the parameter probability distribution. The 
weight 112 in the exponential of equation (5)  and the correct noise level evaluation are 
essential to provide the correct error estimate. The results of this random process are 
presented in figure 3: panel (a) for the EO, R subspace (as in figure 2) and panel (b) for the 
U*, Si subspace, that presents the projection on another pair of highly correlated variables. 
The plots are conceptually similar to those of figure 2. 

The scatter of the points in the p-parameter space (in this case p = 4) indicates the 
shape and extension of the error confidence intervals. Standard criteria recommend the 
selection of a confidence level such that the confidence interval encloses 95% probability 
(i.e. 95% of scatter points). Due to the multi-dimensional nature of the space there is a large 
freedom in the choice of the enclosure shape. The natural choice for Gaussian distributions 
is given by ellipsoidal regions. 

The random spectra generation approach for error determination is reliable but not 
adoptable for routine analysis due to the large computing efforts required in each case. The 
second approach based on the Metropolis Monte Carlo sampling of the maximum likelihood 
parameter probability distribution is extremely powerful. We hope that data analysis methods 
based on these ideas like the RMC approach 1141 will find, in the future, wider application 
in the EXAFS community. For routine analysis the criteria given in section 2.2 in terms of 
the magnitude of the residual function are more practical. This latter approach, however, 
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2.289 

2.288 

2.287 
81.8 82 82.2 

E,- 13400 (eV) 

0.0018 0.002 

cr2 (A2) 
Figure 2. Twwdimensional sections of the parameter space referring to R and Eo (a) and R 
and a’ (b). The dots are the projections of 500 fits perfomed on simulated spectra with added 
random noise. The elliptid contours are the intersections of the four-dimensional ellipsoidal 
regions defined by R((1)) = R,i. +nZC,  with n = I .  2, . . _ _  The n = 1 inner curve corresponds 
to the 95% confidence interval. 

provides reliable confidence intervals only when the second-order expansion of the residual 
function in terms of the parameters A and noise { is accurate. The establishment of the 
equivalence among the criteria for error determination is an important step to be verified 
when a new problem is treated. 

The confidence intervals determined by R([A] )  < &in + C are indicated by continuous 
lines in figure 2 and figure 3. The inner curves actually represent the intersection of the 
four-dimensional ellipsoid with the corresponding two-parameter planes, and refers to an 
increment C = 9.49, p = 4 with a 95% confidence level. The second and successive 
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2.289 

2.288 

2.287 
81.8 ' 82 82.2 

E,-13400 (eV) 

q2 (A2) 
Figure 3. Two-dimensional sections of'the parameter space referring to R and Eo (a) and and 
to Si and u2 (b). The dots &e the projections of 500 parameter sets sampling the probability 
distribution in parameter space, obtained with the Metropolis Monte Carlo algorithm. The 
elliptical contom are the intersections of the four-dimensional ellipsoidal regions defined by 
R((A.1) = R,in i n2C, with n = 1.2.. . ._ The n = I ioner curve corresponds to the 95% 
confidence interval. 

curves~are drawn by putting an increment of n2C instead of C, with n = 2,3 , .  . . so 
that they appear equally spaced in the case of a parabolic minimum. The inner ellipsoidal 
curves and the regions occupied by the scatter points nicely match in all cases; however, the 
comparison should be made with caution. The former include only the effect of correlation 
in the two-parameter subspace, whereas the latter is a two-dimensional projection of the 
four-dimensional scatter plot and includes the effect of correlations among all parameters. 
In the present case the largest correlations occur between R and Eo, as is evident from 
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figure 2(a), and between u2 and Si as is evident from figure 3@). The subspace R and 
EO already includes the major correlation involving either R or EO and about 95% of the 
points are actually enclosed by the inner contour. In contrast, in the R ,  u2 plot (figure 2(b)), 
a large percentage b 5% of the points fall outside the inner contour. The reason is that 
while parameters are correlated with other parameters external to the subspace, the contour 
intersection clearly does not show this effect, that is instead manifested by the projection 
of the simulation results. 

Clearly the constant-residual-function approach is the most straightforward method for 
establishing confidence intervals and can be automatically adopted at the end of the fitting 
routine on the experimental data This example indicates that extreme caution should be 
adopted in the estimation of the confidence intervals or parameter errors from contour 
maps, and that it is always advisable to view the two-dimensional contours between the most 
correlated couples of parameters. The random approach of simulating spectra with additional 
random noise is accurate but extremely time consuming. The substantial equivalence of 
the error estimate between this and the constant-residual-function approach, evident from 
figure 2, gives confidence of the validity of the second-order expansion of R({h) )  in {A} 
and 

A general remark should be made on the actual magnitude of the statistical error shown 
by present analysis. The statistical error in R is ahout 0.001 A, as shown by figure Z(a). 
Such low statistical errors are obtained only in the case of first-shell analysis of EXAFS 
spectra characterized by low noise and wide k extension (kmax - 20 A-’). More 
usually errors in the 0.005 A range are found. These numbers clearly refer to the statistical 
component and it should be kept in mind that systematic errors in the model calculation may 
lie in the 0.01 .k range. In the present case, however, as noted at the beginning of this section, 
the fitting values are indistinguishable from those calculated from spectroscopic parameters 
for the Br2 molecule; as a consequence systematic errors are found to be negligible and the 
present treatment provides reliable estimates for the errors. 

We will conclude this section with a few considerations on the modification of the 
confidence intervals as a function of p 3  and on the effect of external parameters like those 
defining the atomic background in EXAFS. The shape and extension of the confidence 
interval depends on the number of parameters that are simultaneously considered. If the 
analysis is restricted to a reduced number p among P parameters it is assumed that any 
value for the other P - p parameters is acceptable, so the confidence intervals have an 
infinite extension in these directions. When p is increased the extension of the confidence 
interval is reduced along the new directions. In order to balance the loss and maintain 
the enclosed probability to 95% the enclosure bounds in the original p directions have 
to be extended. ~ This is accomplished by the increasing dependence of C on p in the 
constant-residual-function condition R((h} )  = R,r, + C to define confidence intervals. C 
is usually much larger than unity and errors are underestimated if C = 1 is adopted. In real 
EXAFS analysis the atomic absorption background is modelled with empirical functions 
or polynomial splines, depending on a certain number of parameters. These should be 
in principle treated as fitting parameters and included in the error analysis. It is usually 
found, however, that physical and background parameters are largely uncorrelated. As 
a consequence the statistical analysis can he restricted only to the p physical parameters. 
Empirical parameters like EO and Si, instead, must be included due to their large correlation 
with distances or coordination numbers and bond-length variances. 

and on the applicability OF the present methodology to the EXAFS case. 
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4. Nonlinear cases 

There are cases in which the contour shape among selected couples of parameters deparrs 
from that of a parabolic minimum.' This often happens when parameters affect the signal 
in a largely nonlinear way. One example of this behaviour is shown by the parameters 
associated with triatomic structures 'of nearly aligned atoms when the photoabsorber is on 
one side of the chain. Without loss of generality we parametrize the geometry using two 
distance coordinates RI ,  between atom A (photoabsorber) and atom B and R2 between atom 
B and atom C, and one angular coordinate 6' close to 180" describing the angle between 
A, B, and C. The three coordinates will vibrate around average values RI, Rz, and IS@. 
The analysis of the experimental signal is usually performed assuming a model probability 
distribution for the geometrical coordinates f (R1 ,  RI, 8) depending on a set of average and 
vibration parameters. Due to the curvilinear coordinates adopted f ( R 1 ,  Rz, 6') vanishes for 
6' = 180". A simple but realistic model distribution is given by 

where r is a two-dimensional column vector of components Ri - R i ,  and (r, m-lr) is of 
quadratic form. The matrix 

describes the covariance between the vibrations of the two bond lengths. The offdiagonal 
term can be written as o; , .~ ,  = p ~ , . ~ , m  with the bond-bond correlation satisfying 
-1 < pRI,R2 < 1. In this model the bond-length distribution is a two-dimensional Gaussian 
and is factorized with respect to the angular distribution. The latter, valid for 0" < 6' < BO", 
includes a Gaussian factor and a weight (180" - 6') to accomplish the spherical volume 
element decrease. The normalization is strictly correct only in the limit So << 180". The 
most probable value for the angle is 180" -Se,  the average angle is = 180" - m&, 
and the angle variance is U: = (2 - x/2)S:. We point out that a vibrating collinear 
configuration can be easily mistaken for a configuration vibrating around a slightly bent 
angle. The justification of the factorization between the two distributions stems from the 
extremal angle position that makes, in the Gaussian limit, any correlation between angle 
and bond vibrations vanish. The model distribution depends on a total of six parameters 
RI,  Rz, uit, ui2, PR, ,R> ,  and Se. 

In several cases it occurs that the middle atom B has a small weight with respect to 
atom C and that the major part of the signal comes from single-scattering and collinear- 
multiple-scattering components involving atom C. As a consequence the total signal of the 
configuration will have a leading frequency'of the A-C distance, roughly RI + Rz, and a 
damping due mainly to the A-C bond distance variance, roughly 

=U;,  + ~ P R I . R z U R ~ ~ R Z -  (10) 

In this case it is clear that Parameters and g2 will be negatively correlated and that the 
resulting errors in each of the two will be much larger that the error in their sum. This 
suggests the use of the quantities RI + Rz and - as independent parameters that 
are, instead, weakly correlated. The example of nonlinearity comes from the vibrational 
parameters. In general even a weak signal coming from the A-B couple will be sufficient 
to constrain the ui, parameter. On the other hand, the large sensitivity on ujc introduces 
nonlinear effects among the other parameters. 
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Figure 4. A two-dimensional U & ~ - P R , , R ~  section of the parameter space for the fitting of the 
molecule. The solid,mntours are the intersections with the ( p  - I)-dimensional surfaces 

defined by R(I1)) = R,j. +n2C, with n = 1.2.. . .. The non-parabolic nature of the minimum 
is evident; Ule contours are aligned with a family of curyes (dashed lines) mnespondiog to 
constant uss-o values. This suggests the adoption of a different set of independent parameters 
in the fitting. 

A specific example of this occurrence is given by the spectrum of the S-C=O molecule 
studied at the S K edge [21]. The signal is largely dominated by the collinear contribution 
from the 0 atom. In figure 4 the intersection of the R({A]) = Rmin + n2C surfaces with 

of a parabolic minimum and seem to follow hyperbolic patterns. This occurrence can be 
understood in terms of equation (10); that, in fact for fixed uil and variable U& describes 
a family of hyperbolae on the plane UR.-~R~.R,. The dashed lines in figure 4 are calculated 
using equation (10) by putting constant OR, = 0.048 and variable ujo equal to 0.0018, 
0.0022, and 0.0026 A' for the three dashed curves from bottom to top, respectively. The 
lower and upper curve match nicely with then = 1 contour. It is clear that in this case 
cannot be measured accurately by EXAFS, although the experiment is perf'ectly compatible 
with a typical zero-point vibration level. On the other hand the S-0 vibrational variance 
can be determined accurately; it is found to be uio = 0.0022(4) A'. 

This occurrence is not general for collinear cases and is due to the specific intensity and 
parameter dependence of the signals. In the present case the parameter choice is not ideal, 
and the hyperbolic pattern shown by figure 4 suggests the use of U& as an independent 
parameter rather than, for instance, u,?=~. This latter choice yields parabolic-like minima 
and allows one to make a better estimate of the statistical errors. 

This example has shown a typical case in which the flexibility in parameter selection 
can be fruitfully used to choose a set with an improved parabolic behaviour around the 
minimum of the residual function. 

the u~.~-~R~.~~ 2 subspace are reported. Clearly, the contours greatly depart from those 

5. Conclusion 

The present paper provides a general framework for the statistical error evaluation in the 
context of the EXAFS data analysis. The presented material is intended to enrich the current 
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discussion in the field and to clarify several aspects of the analysis. 
A general formalism for the evaluation of the results is introduced and practical criteria 

for routine analysis are formulated. Particular emphasis is given to the error determination 
problem and to the establishment of confidence intervals in the parameter space. It is shown, 
with a specific example, that the surface specified by the R((A.)) = Rmin + ~ ~ , o , g s  criterion 
encloses multi-dimensional confidence intervals compatible with the scatter of results in 
parameter space given by more rigorous Monte Carlo approaches. 

The explicit treatment of real examples has lead to the discussion of two practical 
aspects: the need to evaluate the noise level on the EXAFS spectra and the caution required 
in the choice of fitting parameters. The first requirement certainly has consequences in the 
data acquisition phase and the suggestion is made that oversampled spectra with at least 
8OC-1000 energy points along a typical EXAFS scan, are always collected. The second 
requirement is essential for the validity and accuracy of the R((h}) = R , , , ~ . + X ~ , ~ , ~ ~  criterion 
for error determination and the suggestion of checking the parabolic nature of the minimum 
of the residual function R((h)) is made. Extended visualization of the error confidence 
interval along several two-dimensional projections is recommended. 

It is hoped that this paper will draw general attention to well established statistical 
results and will contribute to improving the average level of current EXAFS analysis. 
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